博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    Nacos服务注册总流程(源码分析)
    查看>>
    nacos服务注册流程
    查看>>
    Nacos服务部署安装
    查看>>
    nacos本地可以,上服务器报错
    查看>>
    Nacos注册中心有几种调用方式?
    查看>>
    nacos注册失败,Feign调用失败,feign无法注入成我们的bean对象
    查看>>
    nacos源码 nacos注册中心1.4.x 源码 nacos源码如何下载 nacos 客户端源码下载地址 nacos discovery下载地址(一)
    查看>>
    Nacos简介、下载与配置持久化到Mysql
    查看>>
    Nacos简介和控制台服务安装
    查看>>
    Nacos管理界面详细介绍
    查看>>
    Nacos编译报错NacosException: endpoint is blank
    查看>>
    nacos自动刷新配置
    查看>>
    nacos运行报错问题之一
    查看>>
    Nacos部署中的一些常见问题汇总
    查看>>
    NACOS部署,微服务框架之NACOS-单机、集群方式部署
    查看>>
    Nacos配置Mysql数据库
    查看>>
    Nacos配置中心中配置文件的创建、微服务读取nacos配置中心
    查看>>
    Nacos配置中心集群原理及源码分析
    查看>>
    nacos配置在代码中如何引用
    查看>>
    nacos配置新增不成功
    查看>>