博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    NLP:从头开始的文本矢量化方法
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    NLTK - 停用词下载
    查看>>
    nmap 使用总结
    查看>>
    nmap 使用方法详细介绍
    查看>>
    nmap使用
    查看>>
    nmap使用实战(附nmap安装包)
    查看>>
    Nmap哪些想不到的姿势
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    nmap指纹识别要点以及又快又准之方法
    查看>>
    Nmap渗透测试指南之指纹识别与探测、伺机而动
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.7 Parameters vs Hyperparameters
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    nnU-Net 终极指南
    查看>>