博客
关于我
2019牛客网暑期多校赛第七场B题--Irreducible Polynomial--多项式可分解判别
阅读量:741 次
发布时间:2019-03-21

本文共 151 字,大约阅读时间需要 1 分钟。

判断多项式是否不可分解的关键在于其次数和二次项情况。具体规则如下:

  • 如果多项式的次数n大于2,则无法直接判断一定能分解,但根据问题描述,当n>2或n=2且判别式大于等于0时,可以确定多项式可分解。

  • 因此,编写程序时,当n≥2且判别式满足条件时,返回No;否则返回Yes。

  • 最终,代码实现了这个判断逻辑。

    转载地址:http://zyvgz.baihongyu.com/

    你可能感兴趣的文章
    Node入门之创建第一个HelloNode
    查看>>
    node全局对象 文件系统
    查看>>
    Node出错导致运行崩溃的解决方案
    查看>>
    Node响应中文时解决乱码问题
    查看>>
    node基础(二)_模块以及处理乱码问题
    查看>>
    node安装卸载linux,Linux运维知识之linux 卸载安装node npm
    查看>>
    node安装及配置之windows版
    查看>>
    Node实现小爬虫
    查看>>
    Node提示:error code Z_BUF_ERROR,error error -5,error zlib:unexpected end of file
    查看>>
    Node提示:npm does not support Node.js v12.16.3
    查看>>
    Node搭建静态资源服务器时后缀名与响应头映射关系的Json文件
    查看>>
    Node服务在断开SSH后停止运行解决方案(创建守护进程)
    查看>>
    node模块化
    查看>>
    node模块的本质
    查看>>
    node环境下使用import引入外部文件出错
    查看>>
    node环境:Error listen EADDRINUSE :::3000
    查看>>
    Node的Web应用框架Express的简介与搭建HelloWorld
    查看>>
    Node第一天
    查看>>
    node编译程序内存溢出
    查看>>
    Node读取并输出txt文件内容
    查看>>